Modeling and Power Quality Improvement of Grid Connected Induction Generators Driven by Turbo-Expanders
نویسندگان
چکیده
Nowadays, the energy crisis has forced the need to recover the energy which is normally wasted in industrial processes. Gas pressure reducing process in city or power plant gas stations is one of these processes in which the energy is wasted. This work is done by turbo-expanders in parallel with gas regulating valves. In electrical industry, these devices drive generators to produce electrical power from the main process. In this paper a model for turbo-expander is presented. This model which utilizes an online calculation method is more efficient and simpler than the older offline model which surmounts the need for making complicated lookup tables prior to calculation. Because of instantaneous varying of domestic consumptions, environment temperature and other effective parameters, turbo-expander inlet gas pressure and mass flow-rate vary with time and consequently the extracted power has time variant specification and causes some power quality issues such as voltage flicker, voltage sag, etc. So, this system is simulated and power quality issues are investigated for a fault occurring at the point of common coupling (PCC). Then, the flicker in electrical waveforms due to change in input pressure or mass flow rate is investigated. Since the power quality problems due to disturbances are considerable, a D-STATCOM is designed and connected at PCC and it is shown that the STATCOM has improved the power quality problems of the system.
منابع مشابه
Turbo Expander System Behavior Improvement Using an Adaptive Fuzzy PID Controller
Turbo-expanders are used in industries for cooling, liquefaction and also power generation. An important part of these turbines is the variable angle nozzle causing a nonlinear behavior that is not well recognized among the prime movers of the dispersed generators. In this paper, at first, the turbo expander system is evaluated in details and its nonlinear behavior is investigated. Then, the sy...
متن کاملارزیابی فلیکر ایجاد شده از ژنراتور سنکرون درایو شده توسط توربین انبساطی در شبکه توزیع
Natural gas is transmitted at high pressure levels. For industrial and domestic consumptions, this pressure should be reduced. Usually, mechanical valves accomplish this process. Turbo-expanders can replace these equipments and reduce gas pressure at city gate gas pressure reduction stations as well. Besides, they can recover the huge amount of high pressure gas energy and drive electrical gene...
متن کاملA Combined Vector and Direct Power Control for AC/DC/AC Converters in DFIG Based Wind Turbine
The doubly-fed generators (DFIG) have clear superiority for the applications of large capacity and limited-range speed control case due to the partially rated inverter, lower cost and high reliability. These characteristics enable the doubly-fed wound rotor induction machine to have vast applications in wind-driven generation.In this paper Combined Vector and direct power control (CVDPC) strate...
متن کاملتحلیل فنی و اقتصادی کاربرد توربین انبساطی در سکوهای گازی ـ نفتی جهت تولید توان الکتریکی
Turbo expanders are rotary machines which recover energy by the expansion of gas or steam and the transference of it to electrical energy. In the past, these machines were used in reducing-pressure stations of power plants and of big cities. By the development of knowledge, the usage of turbo-expanders in other industries such as gas well has become possible. In this research, at first, the con...
متن کاملModel Predictive Control of a BCDFIG With Active and Reactive Power Control Capability for Grid-Connected Applications
Recently, Brushless Cascaded Doubly Fed Induction Generator (BCDFIG) has been considered as an attractive choice for grid-connected applications due to its high controllability and reliability. In this paper, a Finite Control Set Model Predictive Control (FCS-MPC) method with active and reactive power control capability in grid-connected mode is proposed for controlling the BCDFIG in a way that...
متن کامل